Rebuilding the genomic architecture of evolution

Beyond mutations in the genome

Although genetic variation is, in itself, often considered to be one of the fundamental underpinnings of adaptation by natural selection, it can appear through a number of different forms. Typically, we think of genetic variation in terms of individual mutations at a single site (referred to as ‘single nucleotide polymorphisms’, or SNPs), which may vary in frequency across a population or species in response to selective pressures. However, we’ve also discussed some other types of genetic-related variation within The G-CAT before, such as differential gene expression or epigenetic markers.

Continue reading

From coast to continent: how our freshwater biota travelled across the landscape

The Australian aquascape

To anyone who has lived within Australia for a given period time, and likely many from across the globe, it is clear that water is a precious resource. Rainfall across much of the continent is patchy and variable, and the availability of water is a critical aspect in the distribution, survival and evolution of many Australian species. Expectedly, these aspects play an even bigger role for those taxonomic groups that heavily rely on the presence of water; freshwater-dependent taxa such as fish, amphibians or aquatic invertebrates show a keen evolutionary relationship with water across the landscape.

Continue reading

Scanning for causes: an introduction to genome-wide association studies

Understanding genetic determinants

You’ve probably been exposed to one news headline or another in the recent past (let’s say the last 5 years) that reads something like “SCIENTISTS DISCOVER GENES THAT CAUSE (X).” X, of course, varies massively based on the study itself (and sometimes the bastardisation of said study by media): it can include describing medical conditions such as cancer, autism or congenital diseases; behavioural traits, such as sexual preferences; or broad physical traits, such as the classic problem of the inheritability of height. Unsurprisingly, you may think that trying to find the genes responsible for some traits should be either a) super easy, or b) super hard, depending on your own philosophical preference or the trait in question. So how do these studies come about, anyway?

Continue reading

What’s yours is mine: evolution by adaptive introgression

Gene flow and introgression

Genetic variation remains a key component of not only understanding the process and history of evolution, but also for allowing evolution to continue into the future. This is the basis of the concept of ‘evolutionary potential’ – the available variation within a population or species which may enable them to adapt to new environmental stressors as they occur. With the looming threat of contemporary climate change and environmental transformations by humanity, predicting and supporting evolutionary potential across the diversity of life is critical for conserving the stability of our biosphere.

Continue reading

Products of their time: the impact of demographic history on evolution

Demographic history

Many things in life are the product of their history, and nothing exemplifies this better than evolution. Given the often-gradual nature of evolution by natural selection, environmental stressors and factors operating on long-term scales (i.e. over thousands or millions of years) can have major impacts on evolutionary changes across the diversity of biota. While many of these are specific to the characteristics of the target organism (i.e. are related to adaptive traits), non-adaptive (neutral) traits are also critically important in driving the path of evolution.

Continue reading