A simplified guide to genomic vulnerability

Predicting the future for biodiversity

Conservation biology is frequently referred to as a “crisis discipline“, a status which doesn’t appear to be changing any time soon. Like any response to a crisis, biologists of all walks of life operate under a prioritisation scheme – how can our finite resources be best utilised to save as much biodiversity as possible? This approach requires some knowledge of both current vulnerability and future threat – we need to focus our efforts on those populations and species which are most at-risk of extinction in the near (often immediate) future.

Continue reading

Sweeping under the genomic rug: hard and soft sweeps

Of alleles and selection

If you’ve read this blog more than once before, you’re probably sick of hearing about how genetic variation underlies adaptation. It’s probably the most central theme of this blog, and similarly one of the biggest components of contemporary biology. We’ve talked about different types of selection; different types of genes; different ways genes and selection can interact. And believe it or not, there’s still heaps to talk about! Continue reading

Our hand in maladaptation


In the previous post on The G-CAT, we talked about the role of maladaptation in the evolution of populations and species, and how this might impact their future. To summarise, maladaptation is the process (or trait responsible for) which causes a reduction in the fitness. As we discussed, this can come about a number of ways – such as from a shift in the selective environment or from fitness trade-offs in traits over time – and predominantly impacts on species by reducing their capacity to adapt. Particularly, this is important for small populations or those lacking in genetic diversity, which are already at risk of entering an extinction vortex and lack the capability to respond well to extreme selective changes (such as contemporary climate change).

Continue reading

The Bad and the Ugly of evolution: an introduction to maladaptation

Adaptation and natural selection

Adaptation via natural selection is one of the most fundamental components of understanding evolution. It describes how species can continually evolve new, innovative traits and produce the wondrous diversity of the natural world. This process is inevitably underpinned by particular heritable traits often linked to particular genetic variants (alleles). Remember that the underlying genetic trait (the allele) is referred to as the genotype; the physical outcomes of that allele (i.e. how it changes the physiological, behaviour or ecology of the organism) is the phenotype; and the scale of the benefit of possessing that trait is referred to as its fitness. Under the normal process of natural selection, phenotypes which increase fitness are selected for, which results in a shift in genotypes underpinning it.

Continue reading

Rebuilding the genomic architecture of evolution

Beyond mutations in the genome

Although genetic variation is, in itself, often considered to be one of the fundamental underpinnings of adaptation by natural selection, it can appear through a number of different forms. Typically, we think of genetic variation in terms of individual mutations at a single site (referred to as ‘single nucleotide polymorphisms’, or SNPs), which may vary in frequency across a population or species in response to selective pressures. However, we’ve also discussed some other types of genetic-related variation within The G-CAT before, such as differential gene expression or epigenetic markers.

Continue reading