A tale of two fishes: how standing genetic diversity influences species responses to environmental change

How can species respond to environmental change?

If you’re a somewhat avid (or even cursory) reader of The G-CAT, you may remember my wrap-up post at the conclusion of my PhD in 2020 which described the various chapters of my thesis. Well, I’m pleased to announce that data chapter 2 of that thesis – on the comparative phylogeography of two threatened Australian freshwater fishes – has just been published in the journal BMC Ecology and Evolution. It’s a pretty complex paper which tackles genetic diversity, phylogenetics, demographic history, species distribution models and how these interact together to understand the evolutionary history of these species in a comparative framework. Feel free to check it out (it’s open access and free to read!) here.

Continue reading

Conservation applications of functional variation

From genotype to phenotype

One fundamental aspect of conservation and evolution research is the implicit connection between genetic variation, phenotypic characteristics, and their influence on Darwinian fitness. Genetic diversity underpins many aspects of the adaptive potential of a population, and many of the fundamental concepts of the field rely on the assumed connection between genetic and phenotypic characteristics. But this connection is neither straightforward, nor always predictable.

Continue reading

Shifting lakes, coastlines and mountains: how millions of years of environmental changes shaped the evolution of a little fish

The roles of aridification and sea level changes in the diversification and persistence of freshwater fish lineages

The process of publishing science is a lengthy one – there are many rounds of revisions, assessments, and review required before a paper can be published. With that, I’m very proud to announce that the first paper from my PhD has recently been published in the journal Molecular Ecology. This paper is a collection of a lot of complex analyses, and addressing some relatively complicated biogeographical questions, so I’ve decided to provide a simplified summary here.

Continue reading

Incomplete lineage sorting through Pachinko – a visual analogy

Reconstructing evolutionary history

Unravelling the evolutionary history of organisms – one of the main goals of phylogenetic research – remains a challenging prospect due to a number of theoretical and analytical aspects. Particularly, trying to reconstruct evolutionary patterns based on current genetic data (the most common way phylogenetic trees are estimated) is prone to the erroneous influence of some secondary factors. One of these is referred to as ‘incomplete lineage sorting’, which can have a major effect on how phylogenetic relationships are estimated and the statistical confidence we may have around these patterns. Today, we’re going to take a look at incomplete lineage sorting (shortened to ILS for brevity herein) using a game-based analogy – a Pachinko machine. Or, if you’d rather, the same general analogy also works for those creepy clown carnival games, but I prefer the less frightening alternative.

Continue reading